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Let G be a connected graph. Distance between two edges of G is the distance between the corresponding vertices in the 
line graph of G. The edge-Wiener index of a graph G is defined the sum of distances between all pairs of edges of the 
graph G. In this paper at first we defined a new distance between two edges of the graph G, and then in according to this 
definition, we define the edge-Wiener index of a graph G. Then we obtain the edge Wiener index of some well-known 
graphs and the nanotubs )(84 RCTUC  and )(84 SCTUC  nanotorus. 
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1. Introduction 
 
Throughout this paper ),( EVG =  will denote a 

simple connected graph with n vertices and m edges. The 
Wiener index equal to the sum of distances between all 
pairs of vertices of G, that is, 
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where ),( vud  denotes the distance between of vertices u 
and v. 

This index was introduced by the chemist Harold 
Wiener [1] within the study of relation between the 
structure of organic compounds and their properties. The 
first mathematical paper on W was published somewhat 
later [2]. Many papers published in related of computation 
of some topological indices of nanotubes. For example see  
[ 3-18]. 

 
Definition 1. Let S be any set. The distance is a 

mapping RSS →×:δ  such that for any Scba ∈,, ,  
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Definition 2. The edge-Wiener index of the graph G 

is denoted by )(GWe  and defined as follows: 
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where ),( fed  is a distance between edges e and f of the 
graph G. 

Since the edge-Wiener index of the graph G deal with 
distance between of two edges in different ways. For 
example in [], they defined two edge-Wiener index with 
the symbol )(0 GWe  and )(4 GWe  index. Also, in [8], 
they defined the edge-Wiener index of graph G according 
the line graph G. 

 
2. Results and discussions 

 
Now, we define a new distance between two edges of 

the graph G as follows: 
 
Definition 3. Let G be a connected graph and 

)(, GEfe ∈  such that ),(,),( yxfvue == , we 

define }deg,deg,deg,max{deg),( yxvufed = , 
where ideg  is the vertex degree of i. 

d is not distance because, if e=f, then 0),( ≠fed , 

condition 
o2  of definition 1 is violated. 

We now proceed to amend the above definition. 
 
 Definition 4. 
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Lemma 5. Let G be a connected graph and 
)(,, GEgfe ∈  such that ),(,),(,),( thgyxfvue === , 

the quantity Ad , defined by the above definition is a true 
distance. 

Proof. Clearly Ad  satisfies condition 
o1 , 

o2 , 
o3  

of definition 1. We now consider the condition 
o4 , We 

must to show that: ),(),(),( gedgfdfed AAA ≥+ , 
so we show that the below correlation is true: 
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On the right-hand side of (1) compute the maximum 

quantities appearance at two sets and the compute their 
maximum. So is true relation (1). 

Definition 6. 
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We called this index degree-edge index. 
 

Let, as usual, nnn KCP ,,  and nS  be the n-vertex 
path, cycle, complete graph and star, respectively. Let 

baK ,  be the complete bipartite graph on at ba +  
vertices. 

 
Theorem 7. 
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Theorem 8. Let G be a tree of order n. then 
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with equality if and only if G is star of order n-1. 
Proof. Let Δ  be a maximum degree of the graph G. 
Clearly;  
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If 1−=Δ n , then n-1 is the maximum quantity of 
the set degree vertices of all tree G. so 
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If G is star, then by theorem 7, the equality is 
obtained. 

Converse, if G is a tree, so there is 
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comparison between edges of the graph G and relation (1) 
shown that 1),( −= nfed A  for each )(},{ GEfe ⊆ , 
so there is a vertex of the graph G (for example 

)(GVv∈ ) that 1deg −= nv  and hence G is a star. 
 

3. Conclusions 
 

In this section, we obtain the edge-degree index of 
)(84 RCTUC  nanotorus and )(84 SCTUC  nanotubes. 

)(ι . Computing the edge-degree index of )(84 RCTUC  

nanotorus. )(84 RCC  net is a trivalent decoration made 

by alternating squares 4C  and octagons 8C . It can cover 
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either by  a cylinder or a torus. ),( nmTT =  denotes an 

arbitrary )(84 RCC  nanotorus in which n is the number 
of rhombs on the level 1 and the length of torus is m. To 
compute the edge-degree index of this graph, we consider 
the 2-dimensional lattice of T (Fig. 1). By this figure, it is 

obvious that T has exactly 4 mn vertices, 6 mn edges. 
Thus  
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Fig. 1. The 2-Dimensional lattice of )(84 RCTUC  nanotorus with m=3 and n=4. 

 
)(ιι . Computing the edge-degree index of 

)(84 SCTUC  nanotubes 
Carbon nanotubes, one-dimensional carbon allotropes, 

were first discovered in 1991, by Iijima [19] and next in 
1993 by the Iijima’s group [4] and the Bethune’s group 
[20]. Diudea et al. [21] constructed 84CTUC  nanotubes, 

tubules tessellated by square 4C  and octagon 8C  in 
different ways.  Among them, there is one highly 
symmetric special case of interest: )(84 SCTUC  
nanotube. About mathematical aspects related to the 

counting of distance sums of the special case  we can refer 
to [9]. The 2-dimensional lattice of )(84 SCTUC  
nanotubes graph is denoted by ],[ qpGTUCG =  (Fig. 2).  
It is easy to see that 

pqGV 8)( = , ppqGE 212)( −= , so 
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Fig. 2. The graph of )(84 SCTUC  nanotube ],[ qpGTUCG =  with p=4 and q=2. 
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