Computing a new edge-Wiener index of $T U C_{4} C_{8}(S)$ nanotubes and $T U C_{4} C_{8}(R)$ nanotorus

A. KARIMI, A. IRANMANESH ${ }^{\mathrm{a}, *}$, A. TEHRANIAN
Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), P. O. Box:
14515-1775, Tehran, Iran
${ }^{a}$ Department of Mathematics, Tarbiat Modares University, Tehran, Iran

Abstract

Let G be a connected graph. Distance between two edges of G is the distance between the corresponding vertices in the line graph of G . The edge-Wiener index of a graph G is defined the sum of distances between all pairs of edges of the graph G. In this paper at first we defined a new distance between two edges of the graph G, and then in according to this definition, we define the edge-Wiener index of a graph G. Then we obtain the edge Wiener index of some well-known graphs and the nanotubs $T U C_{4} C_{8}(R)$ and $T U C_{4} C_{8}(S)$ nanotorus.

(Received 15 October, 2010; accepted November 10, 2010)
Keywords: Wiener index, Nanotubes, nanotorus, Edge-Wiener index

1. Introduction

Throughout this paper $G=(V, E)$ will denote a simple connected graph with n vertices and m edges. The Wiener index equal to the sum of distances between all pairs of vertices of G, that is,

$$
\begin{equation*}
W=W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) \tag{1}
\end{equation*}
$$

where $d(u, v)$ denotes the distance between of vertices u and v .

This index was introduced by the chemist Harold Wiener [1] within the study of relation between the structure of organic compounds and their properties. The first mathematical paper on W was published somewhat later [2]. Many papers published in related of computation of some topological indices of nanotubes. For example see [3-18].

Definition 1. Let S be any set. The distance is a mapping $\delta: S \times S \rightarrow R$ such that for any $a, b, c \in S$,
$1^{\circ} . \delta(a, b) \geq 0$
2°. $\delta(a, b)=0 \Leftrightarrow a=b$
$3^{\circ} . \delta(a, b)=\delta(b, a)$
$4^{\circ} . \quad \delta(a, b)+\delta(b, c) \geq \delta(a, c)$
Definition 2. The edge-Wiener index of the graph G is denoted by $W_{e}(G)$ and defined as follows:

$$
W_{e}=W_{e}(G)=\sum_{\{e, f\} \subseteq E(G)} d(e, f)
$$

where $d(e, f)$ is a distance between edges e and f of the graph G.

Since the edge-Wiener index of the graph G deal with distance between of two edges in different ways. For example in [], they defined two edge-Wiener index with the symbol $W_{e 0}(G)$ and $W_{e 4}(G)$ index. Also, in [8], they defined the edge-Wiener index of graph G according the line graph G.

2. Results and discussions

Now, we define a new distance between two edges of the graph G as follows:

Definition 3. Let G be a connected graph and $e, f \in E(G)$ such that $e=(u, v), f=(x, y)$, we
define $d(e, f)=\max \{\operatorname{deg} u, \operatorname{deg} v, \operatorname{deg} x, \operatorname{deg} y\}$, where $\operatorname{deg} i$ is the vertex degree of i.
d is not distance because, if $\mathrm{e}=\mathrm{f}$, then $d(e, f) \neq 0$, condition 2° of definition 1 is violated.

We now proceed to amend the above definition.

Definition 4.

$$
d_{A}(e, f)= \begin{cases}d(e, f) & e \neq f \\ 0 & e=f\end{cases}
$$

Lemma 5. Let G be a connected graph and $e, f, g \in E(G)$ such that $e=(u, v), f=(x, y), g=(h, t)$, the quantity d_{A}, defined by the above definition is a true distance.

Proof. Clearly d_{A} satisfies condition $1^{\circ}, 2^{\circ}, 3^{\circ}$ of definition 1 . We now consider the condition 4°, We must to show that: $d_{A}(e, f)+d_{A}(f, g) \geq d_{A}(e, g)$, so we show that the below correlation is true:

$$
\begin{align*}
& \max \{\operatorname{deg} u, \operatorname{deg} v, \operatorname{deg} x, \operatorname{deg} y\} \\
& +\max \{\operatorname{deg} x, \operatorname{deg} y, \operatorname{deg} h, \operatorname{deg} t\} \geq \tag{1}\\
& \max \{\operatorname{deg} u, \operatorname{deg} v, \operatorname{deg} h, \operatorname{deg} t\}
\end{align*}
$$

On the right-hand side of (1) compute the maximum quantities appearance at two sets and the compute their maximum. So is true relation (1).

Definition 6.

$$
W_{e A}=W_{e A}(G)=\sum_{\{e, f\} \subseteq E(G)} d_{A}(e, f)
$$

We called this index degree-edge index.
Let, as usual, P_{n}, C_{n}, K_{n} and S_{n} be the n-vertex path, cycle, complete graph and star, respectively. Let $K_{a, b}$ be the complete bipartite graph on at $a+b$ vertices.

Theorem 7.

(a). $W_{e A}\left(C_{n}\right)=n(n-1)$ for $n \geq 3$
(b). $W_{e A}\left(P_{n}\right)=(n-1)(n-2)$
(c). $W_{e A}\left(S_{n}\right)=\frac{1}{2}(n-1)^{2}(n-2)$
(d). $W_{e A}\left(K_{n}\right)=\frac{1}{8} n(n+1)(n-1)^{2}(n-2)$
(e). $W_{e A}\left(K_{a, b}\right)=\frac{1}{2} a b^{2}(a b-1)$
forb $\geq a$

Proof.

$$
W_{e A}\left(C_{n}\right)=[(n-1)+(n-2)+\ldots . .+2+1]
$$

(a). $=\frac{1}{2} n(n-1) \times 2=n(n-1) \quad$ for $\quad n \geq 3$
(b). $W_{e A}\left(P_{n}\right)=2[(n-2)+(n-3)+\ldots . .+2+1]$
$=(n-2)(n-1)$
$W_{e A}\left(S_{n}\right)=[(n-2)+(n-3)+\ldots$.
(c).
$.+2+1](n-1)=\frac{1}{2}(n-2)(n-1)^{2}$

$$
\begin{aligned}
& W_{e A}\left(K_{n}\right)=\left[\binom{n}{2}-1\right)+\left(\binom{n}{2}-2\right)+\ldots \\
& (\mathrm{d}) . . .+2+1](n-1)=\frac{1}{2}\left[\binom{n}{2}-1\right]\binom{n}{2}(n-1) \\
& \quad=\frac{1}{8} n(n+1)(n-1)^{2}(n-2) \\
& \quad W_{e A}\left(K_{a, b}\right)=((a b-1)+\ldots . .+2+1) b
\end{aligned}
$$

(e). $=\frac{1}{2} a b^{2}(a b-1)$
$b>a$
Theorem 8. Let G be a tree of order n. then

$$
\begin{equation*}
W_{e A}(G) \leq \frac{1}{2}(n-1)^{2}(n-2) \tag{1}
\end{equation*}
$$

with equality if and only if G is star of order $\mathrm{n}-1$.
Proof. Let Δ be a maximum degree of the graph G. Clearly;

$$
\begin{aligned}
& W_{e A}(G) \leq \Delta\binom{n-1}{2} \quad \text { becaus } \\
&|E(G)|=n-1
\end{aligned}
$$

If $\Delta=n-1$, then $n-1$ is the maximum quantity of the set degree vertices of all tree G. so

$$
\begin{aligned}
& W_{e A}(G) \leq(n-1)\binom{n-1}{2}= \\
& \frac{1}{2}(n-1)^{2}(n-2)
\end{aligned}
$$

If G is star, then by theorem 7, the equality is obtained.

Converse, if G is a tree, so there is $\binom{n-1}{2}$ comparison between edges of the graph G and relation (1) shown that $d_{A}(e, f)=n-1$ for each $\{e, f\} \subseteq E(G)$, so there is a vertex of the graph G (for example $v \in V(G))$ that $\operatorname{deg} v=n-1$ and hence G is a star.

3. Conclusions

In this section, we obtain the edge-degree index of $T U C_{4} C_{8}(R)$ nanotorus and $T U C_{4} C_{8}(S)$ nanotubes.
($ا$). Computing the edge-degree index of $T U C_{4} C_{8}(R)$ nanotorus. $C_{4} C_{8}(R)$ net is a trivalent decoration made by alternating squares C_{4} and octagons C_{8}. It can cover
either by a cylinder or a torus. $T=T(m, n)$ denotes an arbitrary $C_{4} C_{8}(R)$ nanotorus in which n is the number of rhombs on the level 1 and the length of torus is m . To compute the edge-degree index of this graph, we consider the 2-dimensional lattice of T (Fig. 1). By this figure, it is
obvious that T has exactly 4 mn vertices, 6 mn edges. Thus

$$
W_{e A}(T[m, n])=3\binom{6 m n}{2}
$$

Fig. 1. The 2-Dimensional lattice of $\operatorname{TUC}_{4} C_{8}(R)$ nanotorus with $m=3$ and $n=4$.
(${ }^{\prime}$). Computing the edge-degree index of counting of distance sums of the special case we can refer $T U C_{4} C_{8}(S)$ nanotubes

Carbon nanotubes, one-dimensional carbon allotropes, were first discovered in 1991, by Iijima [19] and next in 1993 by the Iijima's group [4] and the Bethune's group [20]. Diudea et al. [21] constructed $T U C_{4} C_{8}$ nanotubes, tubules tessellated by square C_{4} and octagon C_{8} in different ways. Among them, there is one highly symmetric special case of interest: $T U C_{4} C_{8}(S)$ nanotube. About mathematical aspects related to the
to [9]. The 2-dimensional lattice of $T U C_{4} C_{8}(S)$ nanotubes graph is denoted by $G=G T U C[p, q]$ (Fig. 2). It is easy to see that

$$
|V(G)|=8 p q,|E(G)|=12 p q-2 p, \text { so }
$$

$$
W_{e A}(\operatorname{GTUC}(p, q))=3\binom{12 p q-2 p}{2}-\binom{2 p}{2}
$$

Fig. 2. The graph of $T U C_{4} C_{8}(S)$ nanotube $G=G T U C[p, q]$ with $p=4$ and $q=2$.

References

[1] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947).
[2] R. C. Entringer, D. E. Jackson, D. A. Snyder, Czechoslovak Math. J. 26, 283 (1976).
[3] Sh. Yousefi, A. R. Ashrafi, MATCH Commun. Math. Comput. Chem., 56(1), 169 (2006).
[4] S. Iijima, T. Ichihashi, Nature 363, 603 (1993).
[5] Ali Iranmanesh, Ivan Gutman, Omid Khormali, Anehgaldi Mahmiani, Math Commun. Math. Comput. Chem. 61, 663 (2009).
[6] A. Iranmanesh, B. Soliemani, MATCH
Communications in Mathematical and in Computer Chemistry, 57, 251 (2007).
[7] A. Iranmanesh, B. Soliemani, A. Ahmadi, Journal of Computational and Theoretical Nanoscience, 4, 147 (2007).
[8] A. Iranmanesh, A. R. Ashrafi, Journal of Computational and Theoretical Nanoscience, .4, 514 (2007).
[9] A. Iranmanesh, Y. Pakravesh, Ars Combinatorics, 84, 247 (2007).
[10] A. Iranmanesh, Y. Pakravesh, Utilitas Mathematica, 75, 89 (2008).
[11] Anehgaldi Mahmiani, Omid Khormali, A. Iranmanesh, Optoelectron. Adv. Mater. Rapid Commun., 2, 252 (2010).
[12] Anehgaldi Mahmiani, Omid Khormali, A. Iranmanesh, Ali Ahmadi, Optoelectron. Adv. Mater. Rapid Commun., 2, 256 (2010).
[13] A. Iranmanesh, Y. Pakravesh, Optoelectron. Adv. Mater. Rapid Commun., 2, 264 (2010).
[14] A. Iranmanesh, O. Khormali, J. Comput. Theor. Nanosci., 5 (1) 131(2008).
[15] A. Tehranian, A. Iranmanesh, Y. Alizadeh, Optoelectron. Adv. Mater. Rapid Commun., 7, 1043 (2010).
[16] A. R. Ashrafi, M. Jalali, M. Ghorbani, Optoelectron. Adv. Mater-Rapid Commun. 3(8), 823 (2009).
[17] A. R. Ashrafi, M. Ghorbani, Optoelectron. Adv. Mater. -Rapid Commun. 3(6), 596 (2009).
[18] A. Iranmanesh, A. Soltani, O. Khormali, Optoelectron. Adv. Mater. Rapid Commun., 4(2), 242 (2010).
[19] S. Iijima, Nature 354, 56 (1991).
[20] D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993).
[21] M. Stefu, M. V. Diudea, MATCH Commun. Math. Comput. Chem. 50, 133(2004).

[^0]
[^0]: *Corresponding author: iranmanesh@modares.ac.ir

